## Process Design Practices Relief Valves

Page : 14-15 By : CK Date : Dec 14



- Assumptions (API 521 4.3.2 and 5.10.4)
  - Liquid outlet flow stops.
  - Vent control valve remains closed.
  - Liquid inlet control valve opens to maintain feed flow rate.
  - Relief valve back pressure = 0 psig (confirm and change later).
- Scenarios
  - Vessel is designed for maximum feed pressure (pump shutoff). No relief case, as the MAWP cannot be exceeded (Interpretation VIII-1-86-33 allows 110% of MAWP).
  - Vessel is *not* designed for maximum feed pressure. Determine load as shown below.
- Accumulated Pressure

Accumulation = 10% for single valve, non-fire case

 $P_{set}$  =  $P_{design}$  = 50 psig  $P_{acc}$  =  $1.1 \times 50$ 

= 55 psig (69.7 psia)

• Normal outlet flow (PFD)

Flow = 448.7 USgpm (101.9 m3/h)

SG = 0.708Viscosity = 0.408 cP

• Relieving rate

 $Q_{relief}$  = Normal outlet flow

• Relief valve size (API 520 3.8/9)

 $A_{eff} = \frac{Q_{relief}}{38K_d K_w K_c K_v} \sqrt{\frac{SG}{P_{acc} - P_{backpres}}}$ 

 $=\frac{448.7}{38\times0.65\times1.0\times1.0\times1.0\times1.0}\sqrt{\frac{0.708}{55-0}}$  with all Ks from API 520 3.8.1

=  $2.061 \text{ in}^2$  (or  $3.378 \text{ in}^2$  based on non-certified eqn)

Selected valve = 4L6 balanced bellows (to common flare with  $P_{set} < 250$  psig)